On the Yudovich solutions for the ideal MHD equations

نویسندگان

  • Taoufik Hmidi
  • TAOUFIK HMIDI
چکیده

In this paper, we address the problem of weak solutions of Yudovich type for the inviscid MHD equations in two dimensions. The local-in-time existence and uniqueness of these solutions sound to be hard to achieve due to some terms involving Riesz transforms in the vorticity-current formulation. We shall prove that the vortex patches with smooth boundary offer a suitable class of initial data for which the problem can be solved. However this is only done under a geometric constraint by assuming the boundary of the initial vorticity to be frozen in a magnetic field line. We shall also discuss the stationary patches for the incompressible Euler system (E) and the MHD system. For example, we prove that a stationary simply connected patch with rectifiable boundary for the system (E) is necessarily the characteristic function of a disc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer

In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

On the well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces

In this paper, we prove the local well-posedness for the Ideal MHD equations in the Triebel-Lizorkin spaces and obtain blow-up criterion of smooth solutions. Specially, a recovered proof of [7] for the incompressible Euler equation is given.

متن کامل

Heat transfer in MHD nanofluid flow over a cone and plate in the presence of heat source/sink

In this study, we presented a mathematical model for analyzing the heat source/sink effect on magnetohydrodynamic two-dimensional ferrofluid flow past a cone and a vertical plate in the presence of volume fraction of ferrous nanoparticles. The governing partial differential equations are transformed as ordinary differential equations making use of similarity solutions and solved numerically wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017